多项式牛顿迭代  描述  给定多项式  g\left(x\right)                             ,已知有  f\left(x\right)                              满足:
    g\left(f\left(x\right)\right)\equiv 0\pmod{x^{n}}                                                                                求出模  x^{n}                   意义下的  f\left(x\right)                             。
 Newton's Method  考虑倍增。
 首先当  n=1                       时, \left[x^{0}\right]g\left(f\left(x\right)\right)=0                                                                    的解需要单独求出。
 假设现在已经得到了模  x^{\left\lceil\frac{n}{2}\right\rceil}                                              意义下的解  f_{0}\left(x\right)                                 ,要求模  x^{n}                   意义下的解  f\left(x\right)                             。
 将  g\left(f\left(x\right)\right)                                         在  f_{0}\left(x\right)                                  处进行泰勒展开,有:
    \sum_{i=0}^{+\infty}\frac{g^{\left(i\right)}\left(f_{0}\left(x\right)\right)}{i!}\left(f\left(x\right)-f_{0}\left(x\right)\right)^{i}\equiv 0\pmod{x^{n}}                                                                                                                                                                                      因为  f\left(x\right)-f_{0}\left(x\right)                                                    的最低非零项次数最低为  \left\lceil\frac{n}{2}\right\rceil                                      ,故有:
    \forall 2\leqslant i:\left(f\left(x\right)-f_{0}\left(x\right)\right)^{i}\equiv 0\pmod{x^{n}}                                                                                                                      则:
    \sum_{i=0}^{+\infty}\frac{g^{\left(i\right)}\left(f_{0}\left(x\right)\right)}{i!}\left(f\left(x\right)-f_{0}\left(x\right)\right)^{i}\equiv g\left(f_{0}\left(x\right)\right)+g'\left(f_{0}\left(x\right)\right)\left(f\left(x\right)-f_{0}\left(x\right)\right)\equiv 0\pmod{x^{n}}                                                                                                                                                                                                                                                                                          f\left(x\right)\equiv f_{0}\left(x\right)-\frac{g\left(f_{0}\left(x\right)\right)}{g'\left(f_{0}\left(x\right)\right)}\pmod{x^{n}}                                                                                                                                                             例题   设给定函数为  h\left(x\right)                             ,有方程:
    g\left(f\left(x\right)\right)=\frac{1}{f\left(x\right)}-h\left(x\right)\equiv 0\pmod{x^{n}}                                                                                                                               应用 Newton's Method 可得:
    \begin{aligned} f\left(x\right)&\equiv f_{0}\left(x\right)-\frac{\frac{1}{f_{0}\left(x\right)}-h\left(x\right)}{-\frac{1}{f_{0}^{2}\left(x\right)}}&\pmod{x^{n}}\\ &\equiv 2f_{0}\left(x\right)-f_{0}^{2}\left(x\right)h\left(x\right)&\pmod{x^{n}} \end{aligned}                                                                                                                                                                                                                                                                               时间复杂度
    T\left(n\right)=T\left(\frac{n}{2}\right)+O\left(n\log{n}\right)=O\left(n\log{n}\right)                                                                                                                           设给定函数为  h\left(x\right)                             ,有方程:
    g\left(f\left(x\right)\right)=f^{2}\left(x\right)-h\left(x\right)\equiv 0\pmod{x^{n}}                                                                                                                       应用 Newton's Method 可得:
    \begin{aligned} f\left(x\right)&\equiv f_{0}\left(x\right)-\frac{f_{0}^{2}\left(x\right)-h\left(x\right)}{2f_{0}\left(x\right)}&\pmod{x^{n}}\\ &\equiv\frac{f_{0}^{2}\left(x\right)+h\left(x\right)}{2f_{0}\left(x\right)}&\pmod{x^{n}} \end{aligned}                                                                                                                                                                                                                                                                      时间复杂度
    T\left(n\right)=T\left(\frac{n}{2}\right)+O\left(n\log{n}\right)=O\left(n\log{n}\right)                                                                                                                           设给定函数为  h\left(x\right)                             ,有方程:
    g\left(f\left(x\right)\right)=\ln{f\left(x\right)}-h\left(x\right)\pmod{x^{n}}                                                                                                                      应用 Newton's Method 可得:
    \begin{aligned} f\left(x\right)&\equiv f_{0}\left(x\right)-\frac{\ln{f_{0}\left(x\right)}-h\left(x\right)}{\frac{1}{f_{0}\left(x\right)}}&\pmod{x^{n}}\\ &\equiv f_{0}\left(x\right)\left(1-\ln{f_{0}\left(x\right)+h\left(x\right)}\right)&\pmod{x^{n}} \end{aligned}                                                                                                                                                                                                                                                                                       时间复杂度
    T\left(n\right)=T\left(\frac{n}{2}\right)+O\left(n\log{n}\right)=O\left(n\log{n}\right)                                                                                                                           build Last update and/or translate time of this article ,Check the history   edit Found smelly bugs? Translation outdated? Wanna contribute with us? Edit this Page on Github   people Contributor of this article OI-wiki   translate Translator of this article   Visit the original article!   copyright The article is available under CC BY-SA 4.0  & SATA   ; additional terms may apply.