Monotonous Queue
在学习单调队列前,让我们先来看一道例题。
例题¶
本题大意是给出一个长度为
最暴力的想法很简单,对于每一段
很显然,这其中进行了大量重复工作,除了开头
这时所用到的就是单调队列了。
概念¶
顾名思义,单调队列的重点分为 "单调" 和 "队列"
"单调" 指的是元素的的 "规律"——递增(或递减)
"队列" 指的是元素只能从队头和队尾进行操作
Ps. 单调队列中的 "队列" 与正常的队列有一定的区别,稍后会提到
例题分析¶
有了上面 "单调队列" 的概念,很容易想到用单调队列进行优化。
要求的是每连续的
也就是说——当满足以上条件时,可将前面的数 "弹出",再将该数真正 push 进队尾。
这就相当于维护了一个递减的队列,符合单调队列的定义,减少了重复的比较次数,不仅如此,由于维护出的队伍是查询范围内的且是递减的,队头必定是该查询区域内的最大值,因此输出时只需输出队头即可。
显而易见的是,在这样的算法中,每个数只要进队与出队各一次,因此时间复杂度被降到了
而由于查询区间长度是固定的,超出查询空间的值再大也不能输出,因此还需要 site 数组记录第
例如我们构造一个单调递增的队列会如下:
原序列为:
1 3 -1 -3 5 3 6 7
因为我们始终要维护队列保证其 递增 的特点,所以会有如下的事情发生:
操作 | 队列状态 |
---|---|
1 入队 | {1} |
3 比 1 大,3 入队 | {1 3} |
-1 比队列中所有元素小,所以清空队列 -1 入队 | {-1} |
-3 比队列中所有元素小,所以清空队列 -3 入队 | {-3} |
5 比 -3 大,直接入队 | {-3 5} |
3 比 5 小,5 出队,3 入队 | {-3 3} |
-3 已经在窗体外,所以 -3 出队;6 比 3 大,6 入队 | {3 6} |
7 比 6 大,7 入队 | {3 6 7} |
例题参考代码
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iostream>
#define maxn 1000100
using namespace std;
int q[maxn], a[maxn];
int n, k;
void getmin() {
int head = 0, tail = 0;
for (int i = 1; i < k; i++) {
while (head <= tail && a[q[tail]] >= a[i]) tail--;
q[++tail] = i;
}
for (int i = k; i <= n; i++) {
while (head <= tail && a[q[tail]] >= a[i]) tail--;
q[++tail] = i;
while (q[head] <= i - k) head++;
printf("%d ", a[q[head]]);
}
}
void getmax() {
int head = 0, tail = 0;
for (int i = 1; i < k; i++) {
while (head <= tail && a[q[tail]] <= a[i]) tail--;
q[++tail] = i;
}
for (int i = k; i <= n; i++) {
while (head <= tail && a[q[tail]] <= a[i]) tail--;
q[++tail] = i;
while (q[head] <= i - k) head++;
printf("%d ", a[q[head]]);
}
}
int main() {
scanf("%d%d", &n, &k);
for (int i = 1; i <= n; i++) scanf("%d", &a[i]);
getmin();
printf("\n");
getmax();
printf("\n");
return 0;
}
Ps. 此处的 "队列" 跟普通队列的一大不同就在于可以从队尾进行操作,STL 中有类似的数据结构 deque。
buildLast update and/or translate time of this article,Check the history
editFound smelly bugs? Translation outdated? Wanna contribute with us? Edit this Page on Github
peopleContributor of this article Link-cute, Xeonacid, ouuan
translateTranslator of this article Visit the original article!
copyrightThe article is available under CC BY-SA 4.0 & SATA ; additional terms may apply.